Appendix C

Guidelines for Air Methods Included in the NCASI Methods Manual

March 1997

Guidelines for Air Methods Included in the NCASI Methods Manual

1.0 Introduction

To be consistent with the content of existing Environmental Protection Agency Air Methods, the following guidelines were adopted by NCASI.

2.0 Body Of Methods (Air Methods)

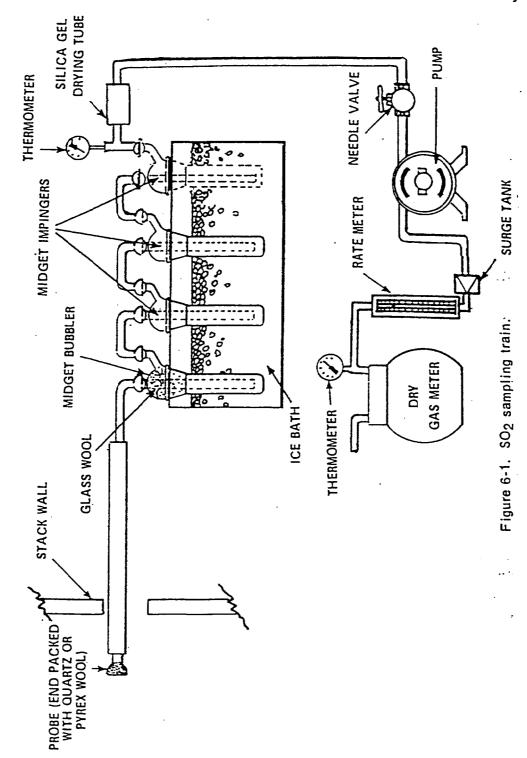
NCASI air methods must contain the following sections. All sections are considered mandatory for all methods and are similar to EPA air methods. If the description of the procedure for a particular method is extensive, additional numbered sections may be inserted as required to allow logical division of the procedure (e.g., sampling, sample recovery and, sample analysis); however, the sections listed below must appear in each method in the order listed.

- **2.1** Principle and applicability
- 2.2 Apparatus
- 2.3 Reagents
- **2.4** Procedure
- **2.5** Calibration
- **2.6** Calculations
- **2.7** Alternative procedures
- **2.8** References
- 2.9 Tables, diagrams, flowcharts, and validation data

3.0 Reference

EPA Method 6 "Determination of Sulfur Dioxide Emissions for Stationary Sources" is included herein for reference.

METHOD 6—DETERMINATION OF SULPUR DIOX-IDE EMISSIONS FROM STATIONARY SOURCES


1. Principle and applicability

1.1 Principle. A gas sample is extracted from the sampling point in the stack. The sulfuric acid mist (including sulfur trioxide) and the sulfur dioxide are separated. The sulfur dioxide fraction is measured by the barium-thorin titration method.

1.2 Applicability. This method is applicable for the determination of sulfur dioxide emissions from stationary sources. The minimum detectable limit of the method has been determined to be 3.4 milligrams (mg) of SO₂/m³ (2.12×10⁻⁷ lb/ft³). Although no upper limit has been established, tests have shown that concentrations as high as 80,000 mg/m³ of SO₂ can be collected efficiently in two midget impingers, each containing 15 milliliters of 3 percent hydrogen peroxide, at a rate of 1.0 lpm for 20 minutes. Based on theoretical calculations, the upper concentration limit in a 20-liter sample is about 93,300 mg/m.

Possible interferents are free ammonia, water-soluble cations, and fluorides. The cations and fluorides are removed by glass wool filters and an isopropanol bubbler, and hence do not affect the SO₂ analysis. When samples are being taken from a gas stream with high concentrations of very find metallic fumes (such as in inlets to control devices), a high-efficiency glass fiber filter must be used in place of the glass wool plug (i.e., the one in the probe) to remove the cation interferents.

Free ammonia interferes by reacting with SO, to form particulate sulfite and by reacting with the indicator. If free ammonia is present (this can be determined by knowledge of the process and noticing white particulate matter in the probe and isopropanol bubbler), alternative methods, subject to the approval of the Administrator, U.S. Environmental Protection Agency, are required.

λ

2. Apparatus

2.1 Sampling. The sampling train is shown in Figure 6-1, and component parts are discussed below. The tester has the option of substituting sampling equipment described in Method 8 in place of the midget impinger equipment of Method 6. However, the Method 8 train must be modified to include a heated filter between the probe and isopropanol impinger, and the operation of the sampling train and sample analysis must be at the flow rates and solution volumes defined in Method 8.

The tester also has the option of determining SO, simultaneously with particulate matter and moisture determinations by (1) replacing the water in a Method 5 impinger system with 3 percent peroxide solution, or (2) by replacing the Method 5 water impinger system with a Method 8 isopropanolfilter-peroxide system. The analysis for SO. must be consistent with the procedure in Method 8.

- 2.1.1 Probe. Borosilicate glass, or stainless steel (other materials of construction may be used, subject to the approval of the Administrator), approximately 6-mm inside diameter, with a heating system to prevent water condensation and a filter (either instack or heated outstack) to remove particulate matter, including sulfuric acid mist. A plug of glass wool is a satisfactory filter.
- 2.1.2 Bubbler and Impingers. One midget bubbler, with medium-coarse glass frit and borosilicate or quartz glass wool packed in top (see Figure 6-1) to prevent sulfuric acid mist carryover, and three 30-ml midget impingers. The bubbler and midget impingers must be connected in series with leak-free glass connectors, silicone grease may be used, if necessary, to prevent leakage.

At the option of the tester, a midget impinger may be used in place of the midget bubbler.

Other collection absorbers and flow rates may be used, but are subject to the approval of the Administrator. Also, collection efficiency must be shown to be at least 99 percent for each test run and must be documented in the report. If the efficiency is found to be acceptable after a series of three tests, further documentation is not required. To conduct the efficiency test, an extra absorber must be added and analyzed separately. This extra absorber must not contain more than 1 percent of the total

- 2.1.3 Glass Wool. Borosilicate or quartz.2.1.4 Stopcock Grease. Acetone-insoluble.
- heatstable silicone grease may be used, if necessary.
- 2.1.5. Temperature Gauge. Dial thermometer, or equivalent, to measure temperature of gas leaving impinger train to within 1° C

- 2.1.6 Drying Tube. Tube packed with 6to 16-mesh indicating type silica gel, or equivalent, to dry the gas sample and to protect the meter and pump. If the silica gel has been used previously, dry at 175° C (350° F) for 2 hours. New silica gel may be used as received. Alternatively, other types of decissants (equivalent or better) may be used. subject to approval of the Administrator.
- 2.1.7 Valve. Needle valve, to regulate sample gas flow rate.
- 2.1.8 Pump. Leak-free diaphragm pump, or equivalent, to pull gas through the train. Install a small surge tank between the pump and rate meter to eliminate the pulsation effect of the diaphragm pump on the rotameter.
- 2.1.9. Rate Meter. Rotameter, or equivalent, capable of measuring flow rate to within 2 percent of the selected flow rate of about 1000 cc/min.
- 2.1.10 Volume Meter. Dry gas meter, sufficiently accurate to measure the sample volume within 2 percent, calibrated at the selected flow rate and conditions actually encountered during sampling, and equipped with a temperature gauge (dial thermometer, or equivalent) capable of measuring temperature to within 3°C (5.4°F).
- 2.1.11 Barometer. Mercury, aneroid, or other barometer capable of measuring atmospheric pressure to within 2.5 mm Hg (0.1 in. Hg). In many cases, the barometric reading may be obtained from a nearby national weather service station, in which case the station value (which is the absolute barometric pressure) shall be requested and an adjustment for elevation differences between the weather station and sampling point shall be applied at a rate of minus 2.5 mm Hg (0.1 in. Hg) per 30 m (100 ft) elevation increase or vice versa for elevation decrease.
- 2.1.12 Vacuum Gauge and Rotameter. At least 760 mm Hg (30 in. Hg) gauge and 0-40 cc/min rotameter, to be used for leak check of the sampling train.
 - 2.2 Sample Recovery.
- 2.2.1 Wash bottles. Polyethylene or glass. 500 ml, two.
- 2.2.2 Storage Bottles. Polyethylene, 100 ml, to store impinger samples (one per sample).
- 2.3 Analysis.
- 2.3.1 Pipettes. Volumetric type, 5-ml, 20ml (one per sample), and 25-ml sizes.
- 2.3.2 Volumetric Flasks. 100-ml size (one per sample) and 1000 ml size.
- 2.3.3 Burettes. 5- and 50-ml sizes.
 2.3.4 Erlenmeyer Flasks. 250 ml-size (one for each sample, blank, and standard).
- 2.3.5 Dropping Bottle. 125-ml size, to add indicator.
 - 2.3.6. Graduated Cylinder. 100-ml size.
- 2.3.7 Spectrophotometer. To measure absorbance at 352 nanometers.

3. Reagents

Unless otherwise indicated, all reagents must conform to the specifications established by the Committee on Analytical Reagents of the American Chemical Society. Where such specifications are not available, use the best available grade.

3.1 Sampling.

3.1.1 Water. Deionized distilled to conform to ASTM specification D1193-77, Type 3 (incorporated by reference—see § 60.17). At the option of the analyst, the KMnO, test for oxidizable organic matter may be omitted when high concentrations of organic matter are not expected to be present.

3.1.2 Isopropanol, 80 percent. Mix 80 ml of isopropanol with 20 ml of deionized, distilled water. Check each lot of isopropanol for peroxide impurities as follows: shake 10 ml of isopropanol with 10 ml of freshly prepared 10 percent potassium iodide solution. Prepare a blank by similarly treating 10 ml of distilled water. After 1 minute, read the absorbance at 352 nanometers on a spectrophotometer. If absorbance exceeds 0.1, reject alcohol for use.

Peroxides may be removed from isopropanol by redistilling or by passage through a column of activated alumina; however, reagent grade isopropanol with suitably low peroxide levels may be obtained from commercial sources. Rejection of contaminated lots may, therefore, be a more efficient procedure.

3.1.3 Hydrogen Peroxide, 3 Percent. Dilute 30 percent hydrogen peroxide 1:9 (v/v) with deionized, distilled water (30 ml is needed per sample). Prepare fresh daily.

- 3.1.4 Potassium Iodide Solution, 10 Percent. Dissolve 10.0 grams KI in deionized, distilled water and dilute to 100 ml. Prepare when needed.
 - 3.2 Sample Recovery.
- 3.2.1 Water. Deionized, distilled, as in 3.1.1.
- 3.2.2 Isopropanol, 80 Percent. Mix 80 ml of isopropanol with 20 ml of deionized, distilled water.
 - 3.3 Analysis.

1

- 3.3.1 Water. Deionized, distilled, as in 3.1.1.
- 3.3.2 Isopropanol, 100 percent.
- 3.3.3 Thorin Indicator. 1-(o-arsonopheny-lazo)-2-naphthol-3,6-disulfonic acid, disodium salt, or equivalent. Dissolve 0.20 g in 100 ml of deionized, distilled water.
- 3.3.4 Barium Perchlorate Solution, 0.0100 N. Dissolve 1.95 g of barium perchlorate trihydrate [Ba(ClO₄)₂·3H₂O] in 200 ml distilled water and dilute to 1 liter with isopropanol. Alternatively, 1.22 g of [BaCl₂·2H₂O] may be used instead of the perchlorate. Standardize as in Section 5.5.
- 3.3.5 Sulfuric Acid Standard, 0.0100 N. Purchase or standardize to ±0.0002 N against 0.0100 N NaOH which has previous-

ly been standardized against potassium acid phthalate (primary standard grade).

3.3.6 Quality Assurance Audit Samples. Sulfate samples in glass vials prepared by EPA's Environmental Monitoring Systems Laboratory, Quality Assurance Division Source Branch, Mail Drop 77A, Research Triangle Park, North Carolina 27711. Each set will consist of two vials having solutions of unknown concentrations. Only when making compliance determinations, obtain an audit sample set from the Quality Assur. ance Management office at each EPA regional Office or the responsible enforce. ment agency. (Note: The tester should notify the quality assurance office or the responsible enforcement agency at least 30 days prior to the test date to allow sufficient time for sample delivery.)

4. Procedure.

4.1 Sampling.

4.1.1 Preparation of collection train. Measure 15 ml of 80 percent isopropanol into the midget bubbler and 15 ml of 3 percent hydrogen peroxide into each of the first two midget impingers. Leave the final midget impinger dry. Assemble the train as shown in Figure 6-1. Adjust probe heater to a temperature sufficient to prevent water condensation. Place crushed ice and water around the impingers.

4.1.2 Leak-check procedure. A leak check prior to the sampling run is optional; however, a leak check after the sampling run is mandatory. The leak-check procedure is as follows:

Temporarily attach a suitable (e.g., 0-40 cc/min) rotameter to the outlet of the dry gas meter and place a vacuum gauge at or near the probe inlet. Plug the probe inlet, pull a vacuum of at least 250 mm Hg (10 in. Hg), and note the flow rate as indicated by the rotameter. A leakage rate not in excess of 2 percent of the average sampling rate is acceptable.

Note: Carefully release the probe inlet plug before turning off the pump.

It is suggested (not mandatory) that the pump be leak-checked separately, either prior to or after the sampling run. If done prior to the sampling run, the pump leakcheck shall precede the leak check of the sampling train described immediately above; if done after the sampling run, the pump leak-check shall follow the train leak-check. To leak check the pump, proceed as follows: Disconnect the drying tube from the probeimpinger assembly. Place a vacuum gauge at the inlet to either the trying tube or the pump, pull a vacuum of 250 mm (10 in.) Hg. plug or pinch off the outlet of the flow meter and then turn off the pump. The vacuum should remain stable for at least 30 seconds.

Environmental Protection Agency

Other leak-check procedures may be used. subject to the approval of the Adminstrator. U.S. Environmental Protection Agency.

4.1.3 Sample collection. Record the initial dry gas meter reading and barometric pressure. To begin sampling, position the tip of the probe at the sampling point, connect the probe to the bubbler, and start the pump. Adjust the sample flow to a constant rate of approximately 1.0 liter/min as indicated by the rotameter. Maintain this constant rate (±10 percent) during the entire sampling run. Take readings (dry gas meter, tempertures at dry gas meter and at impinger outlet and rate meter) at least every 5 minutes. Add more ice during the run to keep the temperture of the gases leaving the last impinger at 20° C (68° F) or less. At the conclusion of each run, turn off the pump, remove probe from the stack, and record the final readings. Conduct a leak check as in Section 4.1.2 (This leak check is mandatory.) If a leak is found, void the test run, or use procedures acceptable to the Administrator to adjust the sample volume for the leakage. Drain the ice bath, and purge the remaining part of the train by drawing clean ambient air through the system for 15 minutes at the sampling rate.

¿ Clean ambient air can be provided by passing air through a charcoal filter or through an extra midget impinger with 15 ml of 3 percent H.O. The tester may opt to simply use ambient air, without purification.

4.2 Sample Recovery. Disconnect the impingers after purging. Discard the contents of the midget bubbler. Pour the contents of the midget impingers into a leak-free polyethylene bottle for shipment. Rinse the three midget impingers and the connecting tubes with deionized, distilled water, and add the washings to the same storage container. Mark the fluid level. Seal and identily the sample container.

4.3 Sample Analysis. Note level of liquid in container, and confirm whether any sample was lost during shipment; note this on analytical data sheet. If a noticeable amount of leakage has occurred, either void the sample or use methods, subject to the approval of the Administrator, to correct

the final results.

Transfer the contents of the storage container to a 100-ml volumetric flask and dilute to exactly 100 ml with deionized, distilled water. Pipette a 20-ml aliquot of this solution into a 250-ml Erlenmeyer flask, add 80 ml of 100 percent isopropanol and two to four drops of thorin indicator, and titrate to a pink endpoint using 0.0100 N barium perchlorate. Repeat and average the titration Volumes. Run a blank with each series of samples. Replicate titrations must agree Within 1 percent or 0.2 ml. whichever is larger.

NOTE: Protect the 0.0100 N barium perchlorate solution from evaporation at all times.

4.4 Audit Sample Analysis. Concurrently analyze the two audit samples and a set of compliance samples (Section 4.3) in the same manner to evaluate the technique of the analyst and the standards preparation. (Note: It is recommended that known quality control samples be analyzed prior to the compliance and audit sample analysis to optimize the system accuracy and precision. One source of these samples is the Source Branch listed in Section 3.3.6.) The same analysts, analytical reagents, and analytical system shall be used both for compliance samples and the EPA audit samples; if this condition is met, auditing of subsequent compliance analyses for the same enforcement agency within 30 days is not required. An audit sample set may not be used to validate different sets of compliance samples under the jurisdiction of different enforcement agencies, unless prior arrangements are made with both enforcement agencies.

Calculate the concentrations in mg/dscm using the specified sample volume in the audit instructions. (Note: Indication of acceptable results may be obtained immediately by reporting the audit results in mg/dscm and compliance results in total mg SO2/ sample by telephone to the responsible enforcement agency.) Include the results of both audit samples, their identification numbers, and the analyst's name with the results of the compliance determination samples in appropriate reports to the EPA regional office or the appropriate enforcement agency. Include this information with subsequent compliance analyses for the same enforcement agency during the 30-day period.

The concentrations of the audit samples obtained by the analyst shall agree within 5 percent of the actual concentrations. If the 5-percent specification is not met, reanalyze the compliance samples and audit samples, and include initial and reanalysis values in the test report (see Note in first paragraph of this section).

Failure to meet the 5-percent specification may require retests until the audit problems are resolved. However, if the audit results do not affect the compliance or noncompliance status of the affected facility, the Administrator may waive the reanalysis requirement, further audits, or retests and accept the results of the compliance test. While steps are being taken to resolve audit analysis problems, the Administrator may also choose to use the data to determine the compliance or noncompliance status of the affected facility.

5 Calibration

5.1 Metering System.

5.1.1 Initial Calibration. Before its initial use in the field, first leak check the metering system (drying tube, needle valve, pump, rotameter, and dry gas meter) as follows: place a vacuum gauge at the inlet to the drying tube and pull a vaccum of 250 mm (10 in.) Hg, plug or pinch off the outlet of the flow meter, and then turn off the pump. The vaccum shall remain stable for at least 30 seconds. Carefully release the vaccum gauge before releasing the flow meter end.

Next, remove the drying tube and calibrate the metering system (at the sampling flow rate specified by the method) as follows: connect an appropriately sized wet test meter (e.g., 1 liter per revolution) to the inlet. Make three independent calibration runs, using at least five revolutions of the dry gas meter per run. Calculate the calibration factor, Y (wet test meter calibration volume divided by the dry gas meter volume, both volumes adjusted to the same reference temperature and pressure), for each run, and average the results. If any Y value deviates by more than 2 percent from the average, the metering system is unacceptable for use. Otherwise, use the average as the calibration factor for subsequent test runs.

5.1.2 Post-Test Calibration Check. After each field test series, conduct a calibration check as in Section 5.1.1 above, except for the following variations: (a) the leak check is not to be conducted, (b) three, or more revolutions of the dry gas meter may be used, and (c) only two independent runs need be made. If the calibration factor does not deviate by more than 5 percent from the initial calibration factor (determined in Section 5.1.1), then the dry gas meter volumes obtained during the test series are acceptable. If the calibration factor deviates by more than 5 percent, recalibrate the metering system as in Section 5.1.1, and for the calculations, use the calibration factor (initial or recalibration) that yields the lower gas volume for each test run.

5.2 Thermometers. Calibrate against mercury-in-glass thermometers.

5.3 Rotameter. The rotameter need not be calibrated but should be cleaned and maintained according to the manufactuturer's instruction.

5.4 Barometer. Calibrate against a mercury barometer.

5.5 Barium Perchlorate Solution. Standardize the barium perchlorate solution against 25 ml of standard sulfuric acid to which 100 ml of 100 percent isopropanol has been added.

Run duplicate analyses. Calculate the normality using the average of a pair of duplicate analyses where the titrations agree within 1 percent or 0.2 ml, whichever is larger.

6. Calculations.

_1

Carry out calculations, retaining at least one extra decimal figure beyond that of the acquired data. Round off figures after final calculation.

6.1 Nomenclature.

C_{so}=Concentration of sulfur dioxide, dry basis corrected to standard conditions, mg/dscm (lb/dscf).

N=Normality of barium perchlorate titrant, milliequivalents/ml.

Phas = Barometric pressure at the exit orifice of the dry gas meter, mm Hg (in. Hg).

P_{sta}=Standard absolute pressure, 760 mm Hg (29.92 in, Hg).

T_m = Average dry gas meter absolute temperature, *K (*R).

 T_{std} =Standard absolute temperature, 293° K (528° R).

Va = Volume of sample aliquot titrated, ml.

 V_m =Dry gas volume as measured by the dry gas meter, dcm (dcf).

 $V_{m(std)}$ =Dry gas volume measured by the dry gas meter, corrected to standard conditions, dscm (dscf).

 V_{sola} =Total volume of solution in which the sulfur dioxide sample is contained, 100 ml.

V₁=Volume of barium perchlorate titrant used for the sample, ml (average or replicate titrations).

V_{tb}=Volume of barium perchlorate titrant used for the blank, ml.

Y=Dry gas meter calibration factor.

32.03=Equivalent weight of sulfur dioxide.

6.2 Dry sample gas volume, corrected to standard conditions.

$$V_{m \, (\mathrm{std})} = V_{m} Y \left(\frac{T_{\mathrm{std}}}{T_{m}} \right) \left(\frac{P_{\mathrm{bar}}}{P_{\mathrm{std}}} \right) = K_{\mathrm{I}} Y \frac{V_{m} \, P_{\mathrm{bar}}}{T_{m}}$$

Equation 6-1

where

where:

 $K_1=0.3858^{\circ}$ K/mm Hg for metric units. =17.64° R/in. Hg for English units.

6.3 Sulfur dioxide concentration.

$$C_{\text{SO}_2} = K_2 \frac{(V_t - V_{tb}) \ N\left(\frac{V_{\text{soin}}}{V_a}\right)}{V_{m(\text{std})}}$$

 $K_3=32.03$ mg/meq. for metric units. =7.061×10⁻⁵ lb/meq. for English units.

6.4 Relative Error (RE) for QA Audit Samples, Percent.

 $RE = \frac{C_e - C_o}{C_o \times 100}$ Eq. 6-3

Where:

ł

C₄=Determined audit sample concentration, mg/dscm.

C.=Actual audit sample concentration, mg/dscm.

7. Alternative Procedures.

7.1 Dry Gas Meter as a Calibration Standard. A dry gas meter may be used as a calibration standard for volume measurements in place of the wet test meter specified in Section 5.1, provided that it is calibrated initially and recalibrated periodically according to the same procedures outlined in Method 5, Section 7.1, with the following exception: (1) the dry gas meter is calibrated against a wet test meter having a capacity of 1 liter/rev or 3 liters/rev and having the capability of measuring volume to within ± 1 percent; (2) the dry gas meter is calibrated at 1 liter/min (2 cfh); and (3) the meter box of the Method 6 sampling train is calibrated at the same flow rate.

8. Bibliography.

1. Atmospheric Emissions from Sulfuric Acid Manufacturing Processes. U.S. DHEW, PHS. Division of Air Pollution. Public Health Service Publication No. 999-AP-13. Cincinnati, Ohio. 1965.

2. Corbett, P. F. The Determination of SO, and SO, in Flue Gases. Journal of the Institute of Fuel. 24: 237-243, 1961.

3. Matty, R. E. and E. K. Diehl. Measuring Flue-Gas SO₂ and SO₂. Power. 101: 94-97. November 1957.

4. Patton, W. F. and J. A. Brink; Jr. New Equipment and Techniques for Sampling Chemical Process Gases. J. Air Pollution Control Association. 13: 162. 1963.

5. Rom, J. J. Maintenance, Calibration, and Operation of Isokinetic Source-sampling Equipment. Office of Air Programs, Environmental Protection Agency. Research Triangle Park, N.C. APTD-0576. March 1972.

5 6. Hamil, H. F. and D. E. Camann. Collaborative Study of Method for the Determination of Sulfur Dioxide Emissions from Stationary Sources (Fossil-Fuel Fired Steam Generators). Environmental Protection Agency, Research Triangle Park, N.C. EPA-650/4-74-024. December 1973.

7. Annual Book of ASTM Standards. Part 31: Water, Atmospheric Analysis. American Society for Testing and Materials. Philadel-

Phia, Pa. 1974, pp. 40-42.

8. Knoll, J. E. and M. R. Midgett. The Application of EPA Method 6 to High Sulfur Dioxide Concentrations. Environmental Protection Agency. Research Triangle Park, N.C. EPA-600/4-76-038. July 1976.

9. Westlin, P. R. and R. T. Shigehara, Procedure for Calibrating and Using Dry Gas Meter Volume Meters as Calibration Standards. Source Evaluation Society Newsletter. 3(1):17-30. February 1978.

3(1):17-30. February 1978.

10. Yu. K. K. Evaluation of Moisture Effect on Dry Gas Meter Calibration. Source Evaluation Society Newsletter. 5(1):24-28. February 1980.

METHOD 6A—DETERMINATION OF SULFUR DI-OXIDE, MOISTURE, AND CARBON DIOXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION SOURCES

1. Principle and applicability

1.1 Applicability. This method applies to the determination of sulfur dioxide (SO₂) emissions from fossil fuel combustion sources in terms of concentration (mg/m³) and in terms of emission rate (ng/J) and to the determination of carbon dioxide (CO₂) concentration (percent). Moisture, if desired, may also be determined by this method.

The minimum detectable limit, the upper limit, and the interferences of the method for the measurement of SO, are the same as for Method 6. For a 20-liter sample, the method has a precision of 0.5 percent CO, for concentrations between 2.5 and 25 percent CO, and 1.0 percent moisture for moisture concentrations greater than 5 percent.

1.2 Principle. The principle of sample collection is the same as for Method 6 except that moisture and CO, are collected in addition to SO, in the same sampling train. Moisture and CO, fractions are determined gravimetrically.

2. Apparatus

2.1 Sampling. The sampling train is shown in Figure 6A-1; the equipment required is the same as for Method 6, Section 2.1, except as specified below:

2.1.1 SO. Absorbers. Two 30-ml midget impingers with a 1-mm restricted tip and two 30-ml midget bubblers with an unrestricted tip. Other types of impingers and bubblers, such as Mae West for SO. collection and rigid cylinders for moisture absorbers containing Drierite, may be used with proper attention to reagent volumes and levels, subject to the Administrator's approval.

2.1.2 CO₂ Absorber. A sealable rigid cylinder or bottle with an inside diameter between 30 and 90 mm and a length between 125 and 250 mm and with appropriate connections at both ends.

Note: For applications downstream of wet scrubbers. a heated out-of-stack filter (either borosilicate glass wool or glass fiber mat) is necessary. The filter may be a separate heated unit or may be within the heated portion of the probe. If the filter is