Created snag dynamics and influence on cavity-nesting bird communities over 25 years in Western Oregon
Why are snags important?
There are two main groups of cavity-nesting birds that rely on snags.

Primary cavity-nesters

- **Strong excavators**: Drilling bill

- **Weak excavators**: Picking bill

Secondary cavity-nesters

- (Images of birds and owls)

Images courtesy of SandersReport.com
Snag abundance has been significantly reduced.
Snags can be created from live trees where natural snags are scarce.
Relatively little known about the long-term structure and use of created snags.
Our study evaluates the effectiveness of created snags at providing habitat for birds after 25 years.
Our study evaluates the effectiveness of created snags at providing habitat for birds after 25 years.

Harvest Treatments
- Group selection treatment
- Two-story treatment
- Clearcut with retained green trees

Snag Creation
- Scattered
- Clustered
Project Objectives:

1. What are the characteristics of snags after ~25 years?
2. How are birds using snags currently?
3. How has use and condition of snags changed over time?
Project Objectives:

1. What are the characteristics of snags after ~25 years?
2. How are birds using snags currently?
• **Snag persistence:** Whether or not a snag is still standing (≥2.5m).

• **Cavity cover:** % of snag covered in cavities
Proportion of snags still standing after 25 years = \(~90\%\)
All snags had cavities, mean cavity cover across treatments = 11%.
Project Objectives:

1. What are the characteristics of snags after 25 years?
2. How are birds using snags currently?
Focal Observations

2015
• 135 snags
• 306 hours

2016
• 204 snags
• 467 hours
Where is the active wildlife cavity?
The proportion of snags used for nesting = \(~10\%\).

<table>
<thead>
<tr>
<th>Year</th>
<th>Nests 2015</th>
<th>Nests 2016</th>
<th>2015 Nest</th>
<th>2016 Nest</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>12 nests</td>
<td>20 nests</td>
<td>1 nest</td>
<td>1 nest</td>
</tr>
</tbody>
</table>
Point Counts and Call Play-back
Primary cavity-nesting species were present in all harvest types.

<table>
<thead>
<tr>
<th>Species</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-breasted sapsucker</td>
<td>58%</td>
</tr>
<tr>
<td>Northern flicker</td>
<td>46%</td>
</tr>
<tr>
<td>Hairy woodpecker</td>
<td>42%</td>
</tr>
<tr>
<td>Pileated woodpecker</td>
<td>27%</td>
</tr>
<tr>
<td>Downy woodpecker</td>
<td>4%</td>
</tr>
</tbody>
</table>
Take home messages

• Snags are standing but decayed.
• Snags have been used for 25 years.
• Snags still provide some habitat for weak excavators after 25 years.
Acknowledgements

Logistical support:
- Niels Garlick, Codey Mathis, Patti Haggerty, Jim Kiser, Mark Harmon, Brenda McComb, Jeff Hollenbeck, Roberta Swift, Mason Wagner, Karla Garcia, Josh Johnson.

Funding
- Fish and Wildlife Habitat in Managed Forests Program in the College of Forestry at OSU, USGS-FRESC, and OSU College Forests.

Photo Credits
- Niels Garlick
- Vivian Phan
- Hannah O’Leary

Amy.barry@oregonstate.edu
Natural snag densities were high, but sizes were much smaller than created snags.
Objective 1: Snag condition

Broken
Objective 1: Snag condition

Bark cover

Overall mean bark cover was 82% and varied among treatments.
Objective 1: Snag condition
Bark cover
Objective 1: Snag condition

Bark cover
Objective 2: Bird use of snags
Focal observations

Nesting has decreased from 20% in 2001 to ~10% in 2015/2016.
Objective 1: Snag status

Persistence

P-value = 0.01
Objective 1: Snag status

Cavity cover

Group selection vs. Clearcut
Group selection vs. Two-story
Two story vs. Clearcut

P-value = <0.001
• 22.5% of snags (n = 46 out of 204 focal snags) were used at some point as foraging substrates or nesting substrates. Only about 1 hr of other use observations total and 47 min foraging. (2016)