Managing Wastewater Treatment Plant Impacts on Air Emissions

Zach Emerson, NCASI
NCASI West Coast Regional Meeting
September 28, 2016
Outline

- Introduction
- Drivers & Standards
- Wastewater Fugitive Emissions Estimates
- Emissions Examples
 - Methanol
 - Hydrogen Sulfide
- Questions
Drivers

- Methanol
 - Hard-pipe option for MACT I compliance
 - 92% or > lb/ton of treatment
 - Clean Condensate Alternative for MACT II compliance
 - < X Lb/ton of emissions
 - Reporting

- Hydrogen Sulfide
 - Reporting

- Other Air Toxics
 - Ambient impact of wastewater fugitives
 - No real standard, maximum impact level
 - Reporting
Introduction

- Fugitive emissions from wastewater treatment sources
 - Complex chemistry and biochemistry
 - Large wastewater systems
 - Load, operation and ambient conditions are variable
- As direct measurements are unfeasible, emissions must be estimated from empirical models
 - Emissions estimates can be tailored to be very site-specific
Wastewater Treatment Plant Emissions

Turbulent Zone around Surface Aerators

Illustration by Thibodeaux
(Figure reproduced from Thibodeaux 1996, page 174)
Introduction – “Generic” Estimates

- Default estimation approach is emissions fraction based

- NCASI SARA Handbook presents emissions, effluent and removal fractions for many chemicals for a “typical” PC/ASB/AST
 - Most “air toxics”: Result of WATER9 Models
 - For methanol and H₂S: Result of field test data
Introduction – Site-Specific Estimates

- Two Types of Estimation Approaches
 - Mechanistic Modeling
 - Simulation of the behavior of a chemical in a wastewater treatment process unit or set of units along multiple fate pathways
 - NOCEPM, WATER9, H2SSIM
 - Pond Profile Based Modeling
 - Characterization of chemical emissions based upon direct measurements of in-basin concentrations and concurrent operational information
 - Appendix C Approach
Introduction – Mechanistic Modeling

- Mass-balance model that incorporates multiple pathways to simulate the site-specific behavior and fate of a chemical

- Requires WWTP characterization and declaration of biorate for each chemical

- Software Tools:
 - WATER9 & H2SSIM
Appendix C calculation procedures
- Empirical model that combines chemical concentration profile with site-specific mass transfer estimates
- Results in a “snapshot”
- Requires chemical concentrations throughout WWTP, basin characterization
- Avoids the need for information on the biological destruction rate (Can be used to calculate)
Methanol Issues

- Hard-pipe
 - Lower demonstrated treatment

- CCA
 - Higher emissions

- Issues are more often **not** related to treatment system performance
 - Methanol analysis
 - Calculation errors or changes
 - Collection issues

- Treatment issues may not be seen in monitoring of traditional effluent parameters

- May be localized to the primary hard-pipe treatment zone
ASB - Methanol Example – Baseline

\[
E_{\text{emissions}} = K_{L,1} A_1 C_1 + K_{L,2} A_2 C_2 + K_{L,3} A_3 C_3 = 63.4 \text{ g/s}
\]

\[
F_{\text{bio}} = \frac{(\text{Influent} - \text{Effluent} - \text{Emissions})}{\text{Influent}} = 0.954 = 95.4\%
\]

- **Zone 1**
 - Influent: \(C = 29.0 \text{ mg/L} \)
 - \(C_1 = 9.1 \text{ mg/L} \)

- **Zone 2**
 - \(C_2 = 2.0 \text{ mg/L} \)

- **Zone 3**
 - \(C_3 = < 0.5 \text{ mg/L} \)
 - Effluent: \(C = < 0.5 \text{ mg/L} \)
ASB - Methanol Example – Higher MeOH Concentration

Emissions = \(K_{L,1} A_1 C_1 + K_{L,2} A_2 C_2 + K_{L,3} A_3 C_3 \) = 139.4 g/s

\[F_{bio} = \frac{(\text{Influent} - \text{Effluent} - \text{Emissions})}{\text{Influent}} = 0.899 = 89.9\% \]
Hydrogen Sulfide Issues

- Higher Emissions due to
 - Treatment system performance issues
 - Increase with lower pH
 - Emissions as “Free” H_2S
 - Some systems can have sulfide generation due to anaerobic activity
Sulfur Transformations in a Treatment Pond

Intermediate Sulfur forms:

- HS^-
- SO_4^{2-}

- Bacterial reduction
- CH_3COO^-, e.g.

- H_2S gas

- Metal sulfides: Zn, Fe, Cu...

- Bacterial & chemical oxidation

- K_H, $pK=7$

- K_{sp}

- Anaerobic bacterial reduction

Chemical reactions:

- $\text{H}_2\text{S} \rightleftharpoons \text{HS}^- \\ pK=7$

- $\text{H}_2\text{S} + \text{HS}^- \rightleftharpoons \text{SO}_4^{2-}$
H_2S Emissions – Baseline emissions

<table>
<thead>
<tr>
<th>Sample Point (SP)</th>
<th>Sulfide (ppb)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 1</td>
<td>300</td>
<td>7.2</td>
</tr>
<tr>
<td>SP 2</td>
<td>300</td>
<td>7.2</td>
</tr>
<tr>
<td>SP 3</td>
<td>250</td>
<td>7.3</td>
</tr>
<tr>
<td>SP 4</td>
<td>100</td>
<td>7.4</td>
</tr>
<tr>
<td>SP 5</td>
<td>50</td>
<td>7.5</td>
</tr>
<tr>
<td>SP 6</td>
<td><30</td>
<td>7.5</td>
</tr>
<tr>
<td>SP 7</td>
<td><30</td>
<td>7.5</td>
</tr>
<tr>
<td>Effluent</td>
<td>< 30 ppb</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Estimated Emission Rate = 0.143 g/s
H$_2$S Emissions – Lower pH

<table>
<thead>
<tr>
<th></th>
<th>Sulfide</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 1</td>
<td>300 ppb</td>
<td>6.7</td>
</tr>
<tr>
<td>SP 2</td>
<td>300 ppb</td>
<td>6.7</td>
</tr>
<tr>
<td>SP 3</td>
<td>250 ppb</td>
<td>6.8</td>
</tr>
<tr>
<td>SP 4</td>
<td>100 ppb</td>
<td>6.9</td>
</tr>
<tr>
<td>SP 5</td>
<td>50 ppb</td>
<td>7.0</td>
</tr>
<tr>
<td>SP 6</td>
<td><30 ppb</td>
<td>7.3</td>
</tr>
<tr>
<td>SP 7</td>
<td><30 ppb</td>
<td>7.5</td>
</tr>
<tr>
<td>Effluent</td>
<td>< 30 ppb</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Estimated Emission Rate = 0.247 g/s
H$_2$S Emissions – Sulfide Generation

<table>
<thead>
<tr>
<th></th>
<th>Sulfide</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 1</td>
<td>300 ppb</td>
<td>7.2</td>
</tr>
<tr>
<td>SP 2</td>
<td>300 ppb</td>
<td>7.2</td>
</tr>
<tr>
<td>SP 3</td>
<td>250 ppb</td>
<td>7.3</td>
</tr>
<tr>
<td>SP 4</td>
<td>100 ppb</td>
<td>7.4</td>
</tr>
<tr>
<td>SP 5</td>
<td>150 ppb</td>
<td>7.5</td>
</tr>
<tr>
<td>SP 6</td>
<td>150 ppb</td>
<td>7.5</td>
</tr>
<tr>
<td>SP 7</td>
<td>300 ppb</td>
<td>7.5</td>
</tr>
<tr>
<td>Effluent</td>
<td>500 ppb</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Estimated Emission Rate = 0.220 g/s
Summary
Best strategy to maintain emission levels

- Methanol
 - Maintain good treatment

- Hydrogen Sulfide
 - Maintain good treatment
 - Avoid low pH spikes
 - Avoid anaerobic conditions, especially in front of the system
Questions and contact information

- Zach Emerson, NCASI
 - Gainesville, FL
 - zemerson@ncasi.org
 - 352-331-1745

- Jim Palumbo, NCASI
 - Boston, MA
 - James.palumbo2@gmail.com
 - 617-263-0145