## Status update of the USFS-NASA partnership leveraging remote sensing advances to inventory forests in interior Alaska

### Hans-Erik Andersen

Resource Monitoring & Assessment/Forest Inventory & Analysis USDA Forest Service

Pacific Northwest Research Station

handersen@fs.fed.us



### Including Interior Alaska in the FIA inventory: A cost-effective way forward

- Highly-complex logistics and limited transportation infrastructure makes field work difficult; therefore expensive (\$8-10K/plot)
- 2014 PNW-FIA & NASA pilot project (funded jointly by NASA CMS & USFS) in Tanana Valley to test a new inventory approach
- Objectives of the 2014 Tanana pilot project:
  - Develop the process of integrating sparse FIA field plot measurements, airborne (G-LiHT) & satellite remote sensing to support inventory goals
  - Compare model-based vs. design-based estimators
  - Tools to deliver remote-sensing products (maps, database, etc.)
- 1n 2016, PNW-FIA obtained funding and began full implementation of the inventory in interior AK
  - Close partnership with State of Alaska (Div. of Forestry) & NASA

USDA Forest Service PNW Research Station





USDA Forest Service PNW Research Station

Forest Inventory and Analysis



Interior Alaska FIA inventory (approx. 4,642 field plots; expected completion in 2026)

#### Major roads in blue

Tanana – 138,572 km² (Arkansas) Susitna Copper – 124,272 km² (Pennsylvania) Southwest - 310,140 km<sup>2</sup> (Arizona) Lower Yukon - 410,080 km<sup>2</sup> (Montana) Upper Yukon – 154,420 km<sup>2</sup> (Georgia)

Content may not reflect National Geographic's current map policy. Sources HERE, UNEP-WOMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA,

### Additional Measurements in Interior Alaska FIA inventory



USDA Forest Service PNW Research Station

# Field work 2016



- 198 plots
  completed
- No reportable injuries
- 1 bear and 1 wolf encounter
- 1 quicksand adventure

USDA Forest Service PNW Research Station

# Field work 2017

### ~300 plots in the Tanana Unit



### **G-LiHT Remote Sensing**

- Airborne G-LiHT RS collected in strip sample (9 km spacing b/n strips) over entire Tanana inventory unit (~138K sq. km) & covering every FIA plot (B. Cook, D. Morton, R. Nelson (NASA-Goddard))
- Goddard Lidar/Hyperspectral/Thermal (G-LiHT) is a state-of-the-art portable, airborne imaging system that simultaneously maps the composition, structure, and condition of vegetation using:
  - 1. Laser scanning 3D structure of vegetation
  - 2. Imaging spectroscopy Species composition and variations in biophysical variables
  - 3. Thermal measurements Surface temperature, heat and moisture stress





Tanana unit flown in 2014 Susitna-Copper unit to be flown in 2018 Other units flown prior to field sampling (i.e. 2020, 2022, 2024)

Coasta

Sources: Esri, HERE, DeLorme, TomTom, Intermap, increment P Corp., GEBCO, USGS, FAC NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong swisstopo, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community, Source Esri, USGS, NOAA, Content may not reflect.National Geographic's current map policy. Source National Geographic, Esri, DeLorme; HERE, UNEP-WCMC, USGS, NASA, ESA, METI, NRS GEBCO, NOAA, Increment P Corp.

# Example G-LiHT Products: Bonanza Creek



**RGB At-Sensor Reflectance** 



# G-LiHT fine-res DSLR

# Integration of remote sensing and field data in the 2014 Tanana Pilot



Field-based aboveground biomass (AGB) estimates by land-cover class for FIA inventories at Tetlin Lidar-assisted aboveground biomass (AGB) estimates (Mg/ha) and their estimated standard errors by land-cover class at TVSF and Tetlin NWR (TNWR) (Ene et al., in review)

| Sub-region | AGB       | Land-cover class |           |            |        |          |           |                               |
|------------|-----------|------------------|-----------|------------|--------|----------|-----------|-------------------------------|
|            | estimatio |                  |           |            |        |          | Total     |                               |
|            | n         | Nonforest        | Deciduous | Coniferous | Mixed  | Wetlands |           | 47                            |
|            | (Mg ha⁻¹) |                  |           |            |        |          |           |                               |
| TNWR       | Mean      | 29.57            | 71.57     | 31.69      | 58.57  | 33.45    | 33.19     |                               |
|            | SE        | 14.47            | 28.57     | 5.73       | 18.90  | 4.85     | 2.82(8.5) | 110                           |
| TVSF       | Mean      | 39.63            | 126.95    | 65.73      | 103.59 | 23.62    | 76.56     | 1000                          |
|            | SE        | 6.20             | 16.60     | 7.74       | 32.01  | 4.43     | 4.83(6.3) | ces: National<br>OAA, increme |



#### Forest Inventory and Analysis

### Assessment of sampling designs via simulation (Chad Babcock, Univ. of WA)

### Simulation provides a means to directly compare various alternative sampling designs

- FIA design-based estimators using only field plot data – provide a benchmark for comparisons
- Model-assisted provide design-unbiased estimators
- Model-based (Bayesian hierarchical spatial models) – can be used when probability sample of field plots is not available
- Wall-to-wall lidar vs. lidar strip sample
- Simulated population based on distributional characteristics of observed lidar structural metrics for Tetlin NWR
- Simulation used to assess variance, bias and 95% coverage probability for each approach



#### USDA Forest Service PNW Research Station

#### Forest Inventory and Analysis









# Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar



Alonzo et al., submitted



# Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar (cont.)



(Alonzo et al., submitted)





### Summary & Future Directions

- 2014 Pilot demonstrated value of partnership between USFS & NASA to leverage advanced RS technologies to support FIA inventory goals in this region
- Airborne remote sensing (G-LiHT) can be used in sampling mode to estimate aboveground biomass/carbon over large, remote region
- Future collaborative work will improve characterization of shrub biomass (with B. Schulz (USFS-AFSL) & Roman Dial (APU); 2016 NASA CMS-funded study)
- Satellite radar (e.g. PALSAR L-band) will likely play a significant role in the inventory design going forward – strong correlations with biomass in boreal forests (Atwood et al., 2014)



### More information

Inventorying Alaska's Forests: An Opportunity for Integrating Interagency Needs with the FIA <u>http://goo.gl/WTQ6lp</u>

G-LiHT | Off to a Flying Start http://goo.gl/t0YhrY

How a Flying Laser Built a 3-D Map of a Massive Alaskan Forest – Wired Magazine article <a href="http://www.wired.com/2014/12/alaska-laser-survey-3d-map/">http://www.wired.com/2014/12/alaska-laser-survey-3d-map/</a>



USDA Forest Service PNW Research Station



Forest Inventory and Analysis



# FIA Forest Type Classification Method



Below are examples from FIA plots in Tetlin NWR

• Delineate individual tree objects with watershed segmentation of CHM.

- Compute dimensions, lidar metrics and reflectance spectra for each object (NOTE: selected G-LiHT spectral bands most similar to Landsat and Sentinel 2).
- Use FIA and lidar-hyperspectral data to perform supervised classification of objects >DBH height.
- Validate with withheld FIA plot data and TVSF stand-scale delineations.

Canopy heights (CHM)

Color Infrared (NIR, red, green)

*Red Edge bands* (783, 705, 740 nm)



Black Spruce







White Spruce







**Paper Birch**