

U.S. Forest Service Forest Inventory and Analysis

FIA NATIONAL BIOMASS PROJECT: ACCOMPLISHMENTS AND STATUS

James A. Westfall

FIA BIOMASS STUDY - RECAP

- Cooperators/Technical assistance
 - University of Maine
 - Virginia Tech
 - Oregon State University
 - Michigan State University
 - University of Montana
 - University of Georgia
 - N. Arizona University
 - Industry: NCASI, Rayonier, Potlatch, Weyerhaeuser
 - Wood Properties: SRS RWU-4704, Forest Products Lab
 - Forest Management Service Center

FIA BIOMASS STUDY

- Trees felled and measured thru 2016
 - + U Georgia 781
 - + Oregon SU 279
 - + Michigan SU 248
 - + Virginia Tech 709
 - + U Maine 189
 - + <u>U Montana</u> 178
 - + Total 2384

FIA BIOMASS STUDY

- Legacytreedata.org
- Leverage existing FS, industrial, and university data to better capture spatial gradients in allometry and wood density.
 - Taper data
 - Biomass studies
 - Density measures

STATUS

- Ongoing data collection
 - Western species data effort
 - Spatial and tree size gaps
- Research accomplishments
 - 36 publications (28 peer-reviewed journal)
 - 52 presentations
 - Full list at legacytreedata.org
- 2017 FIA Stakeholder Science Meeting Session

FUTURE

- Continue development and evaluation of modeling framework(s) that meets FIA and clients needs.
 - Evaluate pro/cons and performance
 - Narrow the field of options
 - Pursue completion of biomass prediction system for national FIA implementation (~2020)

Task		Timeline							
		2017			2018			2019	2020
		Spring	Summer	Fall	Spring	Summer	Fall	2019	2020
Field data collection	/////	X	X	X	X	X?			
Modeling methods	Taper	X	X	Х					
	Comparison	X	X	X					
	Finalizing				Х	Х	Х	Х	
Model		1111	111	1111					
impact	11111	1111	1111					Х	
assessment	11111	1.4.4.4	1	1.1.1.1					
Tech									
Transfer to									Х
FIA									

GOALS

Tree-level models that give consistent transition

- + Size thresholds
- + Geographic region
- + Similar species

 Biomass but not volume in some situations, e.g., saplings, some woodland spp., etc.

Additive components – break out the total AGB into components

GOALS

- Component calculation flexibility, e.g., tops, stumps.
- Quantifiable tree-level model (stem volume or biomass) accuracy, e.g., RMSE is X% of the mean with negligible bias.
- Transparent and documented

LINGERING QUESTIONS

- Current vs new volume models?
- Predict biomass convert to volume?
- Urban tree biomass study?

