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1 Introduction 
Climate change is expected to alter temperature and precipitation conditions non-uniformly across the globe and, 
relevantly, in regions of the United States which contain millions of acres of both publicly and privately managed 
forests. The frequency of extreme events is predicted to increase [1]. Forests are likely to be particularly affected, as 
some tree species survive in narrow climate ranges and are susceptible to extreme conditions [2, 3]. 



2  

Forest landscape models (FLMs) project that, in all, these changes have mixed positive and negative effects, with 
increasing temperature improving tree growth up to a threshold and lessening precipitation generally having a negative 
effect [2]. Exact tree response, however, is species dependent. Complex relationships exist between environmental 
factors like temperature, precipitation, local soil composition, and CO2 concentration, and shift the limiting reagent for 
tree health and growth and are markedly hard to study at even the local scale [3]. Thus, any attempt to model potential 
tree growth across the continental US on a per species basis using only aggregated climate projections would be 
inaccurate and misleading. We instead focus on presenting climate and forestry data in a way that both depicts current 
climate metrics and density and productivity by tree species that can be leveraged as an empirical proxy for species’ 
habitable ranges. 

 
1.1 Project Goals 
Our overarching goal is to present information about future climate and its corresponding uncertainty in ways that are 
helpful to foresters, forest stakeholders, and the National Council for Air and Stream Improvement, Inc. (NCASI) 
member companies. Building on the Climate Projection Analysis Tool (CPAT) developed by Dr. Stephen Prisley, 
we have developed a RShiny dashboard tool to convey climate metrics that provide a balanced picture of how tree 
species may shift given future climatic conditions and enhanced interactivity of the application. We also considered 
who our users are and how they will be interacting with our work, leading us to create a dashboard that is 
statistically rigorous, while still being approachable to an audience of varying statistical acumen. 

 
2 Data and Methodology 

 
2.1 The Coupled Model Intercomparison Project 
The climate data used in our analysis were primarily derived from phase 5 of the Coupled Model Intercomparison 
Project (CMIP5) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM dataset). The 
CMIP is a collaboration among climate science research groups around the world and is considered the scientific 
community’s current consensus view on climate change. Alongside the Intergovernmental Panel on Climate Change 
(IPCC), the CMIP’s goal is to understand how climate responds to both natural and anthropogenic forcings. Below, 
we have written an additional summary of climate modeling more broadly, which provides information about 
large ensemble climate modeling, RCP pathways, and contrasts between findings in the CMIP5 and the more recent 
CMIP6 reports and models. The PRISM project provides three data products: 30-year normal (averages, 
currently 1981-2010), daily time steps, and monthly time steps at high resolution (~800m and ~4km) across the 
US. For this project, we used the 4 km2 resolution data on the main map feature, averaging the monthly data 
between January 2000 and December 2009. 

 
2.2 CMIP5 Ensemble Means vs SPEAR Ensemble Members 
The CMIP5 multi-model ensemble was released alongside the IPCC’s 2013 Annual Report (AR5) [4]. Another 
model we considered was the SPEAR large ensemble (Seamless System for Prediction and Earth System Research), 
which was first published in Delworth et al. (2020) and was included as one of the CMIP6 multi-model ensembles 
[5]. Each ensemble run contained between 30 and 100 ensemble members, and CMIP5 contained roughly 70 
models. Figure 1 contains a visualization of the differences between the two datasets. For this project, both 
datasets had their own advantages and disadvantages. CMIP5 allowed us to capture four different concentration 
pathway scenarios (RCP 2.6, 4.5, 6.0, 8.5) to SPEAR’s RCP 4.5 and 8.5. Furthermore, the CMIP5 multi-model 
ensemble contained 70 ensemble means generated by climate research centers distributed globally, which allowed 
for a broader set of modeling assumptions and techniques. SPEAR on the other hand, was a more up to date model, 
meaning it contained the latest scientific understanding and utilized more advanced computing. Furthermore, 
because the SPEAR dataset contained 30 ensemble members as opposed to means, using this dataset allowed us to 
develop additional measures of uncertainty. While the dashboard is ultimately implemented using only the CMIP5 
dataset, as the larger number of available concentration pathways was deemed more useful for users, it’s still 
important to discuss model advantages and disadvantages to spur future application refinement. 
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Figure 1: Relationship between multi-model ensembles (yellow), large ensemble climate models (red), ensemble 
members (green) and ensemble means (orange). We used the CMIP5 ensemble means (orange) and the 
CMIP6 ensemble members (green). The CMIP5 ensemble means allowed us to use information across 
ensembles produced by different research facilities, while the CMIP6 SPEAR-MED large ensemble allowed us 
to accurately represent climate variability and extreme conditions drawn from a single model. 

 
2.2.1 Model Trade-Offs 

CMIP6’s SPEAR model was developed almost a decade after CMIP5 models, which has some distinct 
advantages. First, advances in scientific understanding and computing mean that CMIP6 models are up to 
date with the latest scientific understanding and are run at higher resolution than earlier CMIP5 models. 
This allows for better prediction at local scales. A further difference between CMIP5 and CMIP6 models is 
that CMIP6 models, on average, found a higher equilibrium climate sensitivity (ECS), meaning that for 
the same Representative Concentration Pathway (RCP), CMIP6 models project more warming than their 
CMIP5 counterparts. The CMIP5 ensemble means still retain some advantages over the CMIP6 data, 
however, namely that we had information from all the large ensembles used, leveraging a broader range of 
assumptions and modeling techniques. Furthermore, the CMIP5 ensemble means tracked four distinct 
emission pathways —RCP 2.6, 4.5, 6.0, 8.5— as opposed to SPEAR’s RCP 4.5 and RCP 8.5. 

 
2.3 Feature Implementation 
Below, we detailed how each of the Climate Application features were constructed and what aspects of climate 
change they were expected to influence. 

 
2.3.1 Summary Table 

The summary table, shown in Figure 2, is intended to give the most high-level overview of the projected 
effects of climate change to the region of interest. Let k index across the CMIP5 model ensemble means, j 
indexes the year (2000-2100), and r indexes the RCP pathway. From the selected RCP and year, the 
statistics calculated are: ‘Yearly Mean Temperature’ (Tmean (j,r) ), ‘Yearly Minimum Temperature’ (Tmin (j,r)), 
‘Yearly Maximum Temperature’ (Tmax(j,r)), and ‘Yearly Mean Precipitation’ (Pmean(j,r)). Then the summaries are 
calculated by first computing an average, maximum, or minimum for each ensemble mean for each of the 
selected years, and then computing a mean across ensemble mean members. As our original data were on 
the monthly resolution, the ‘Yearly Mean Temperature’ is an average across all months and ensemble 
observations for a given year. ‘Yearly Mean Precipitation’ is defined analogously, while ‘Yearly Minimum 
Temperature’ and ‘Yearly Maximum Temperature’ are calculated by first taking either the maximum or
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minimum across months for the selected year and then averaging across the ensemble mean members. This 
allows us to capture average low January temperatures and high July temperatures. Questions that a 
potential user might be able to answer with the summary table include: 

1. Is the temperature in my region expected to increase or decrease over time? 
2. Will there be a more rapid increase in maximum or minimum temperatures? 
3. Is the expected range of temperatures going to increase or decrease over time? 

 
 

 
Figure 2: Summary table displaying the absolute change for key climate variables under the selected RCP 
pathways and years as an example. 

 
2.3.2 Annual Conditions Over Time 

Filling in the gaps of the summary table, we tracked climate variables across the 21st century by plotting the 
summary metrics for each year of interest and adding in uncertainty in Figure 3. Before deriving confidence 
intervals, we first averaged the climate data to the yearly level for all four RCP pathways. Uncertainty for the 
CMIP5 models was generated by taking an empirical 90% confidence interval a cross all 70 CMIP5 
ensemble means, capturing a broad range of methods and frameworks. Focusing on yearly high and low 
temperatures as opposed to averaging monthly high and low temperatures demonstrates seasonal extremes. 
We note that, as our CMIP5 dataset only had ensemble means, extracting extreme heat and cold event 
frequencies is impossible, as the ensemble means themselves already represent the climatology and thus are 
not representative of true yearly extremes. For example, if 30°C is reported as an upper bound for the 
yearly high average monthly temperature, it refers only to the ensemble mean values and not the individual 
ensemble members. This can be broadly interpreted as follows: “We expect that years around 2100 will 
have average summer daily high temperatures no greater than 30°C. Though, we cannot conclude that an 
individual year will not have higher temperatures.” With these plots, users can begin to ask questions related to 
broad level climatology such as: 

1. How extreme will average summer heat become over time? Does precipitation also increase or will 
drought risk worsen or develop? 

2. Will a tree species that is particularly sensitive to high summer heat or variable precipitation conditions 
be able to survive at the end of the century? 

3. What weather conditions might foresters have to confront in the field?
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Figure 3: Plotting conditions by a yearly average across the 21st Century. Both the time ranges and climate 
metric can be toggled. These sample graphics display mean temperature for the selected region from 2022 to 
2080. 

 
2.3.3 Conditions by Month 

While the yearly RCP plot shows conditions over time, we visualize how monthly conditions are expected to 
shift by plotting the climatology by month, where the difference in conditions is measured by the difference 
among the curves (Figure 4). Thus, the vertical distance shows the difference in conditions by month (e.g., 
increased May temperatures by 2°C). Horizontal distance between the curves represents shifting seasons (i.e., 
similar minimum temperatures are expected in 2080 in mid-March as mid-April in 2022 under RCP 8.5). By 
pairing the RCP pathways, we can explore how conditions at the selected year are predicted to change. 
Currently, there are no measures of uncertainty in this graphic, as the dimensionality of our data required 
sacrificing some measures in favor of more important features. Questions which can be answered with this 
graphic might include: 

1. How will the growing season shift in the future? For example, here we see that average temperatures 
above freezing are predicted to be experienced roughly a month earlier towards the end of the 
century. 

2. Will pests be more virulent in the future? Pests, such as the emerald ash borer, don’t tolerate extreme 
cold well (-20F or below), so changing winter lows has implications for how aggressive these invasive 
species will be in the future. 

 
2.3.4 Modeling Changing Tree Species Environmental Niches 

To capture how climate change might affect a particular tree species for the selected region, we compared 
conditions in the selected location to the nationwide distribution of where the tree species lives. In particular, 
modeling the nationwide density of said species across the temperature and precipitation space allowed us 
to track how climate conditions at the location of interest influenced species habitability. This figure can 
answer questions like: 

1. Does the selected region typically support this tree species? 
2. Will this selected region continue to be suitable for this tree species in the future under the RCP 

pathway of interest? 
3. Does the selected region have new potential to support this type of tree in the future? 

 
Note that these recommendations will solely be based on the selected climate variables, and do not include 
other factors that govern species habitability, such as elevation and soil properties.



6  

 

 
Figure 4: Climatology for a selected region and metric between 2022 and 2080. The image on the right shows 
all climate scenarios by color, while the graphic at left displays one selected pathway (RCP 8.5). As the plots 
are interactive, the year can be differentiated using the hover feature of Plotly graphics. 

 
 

 

Figure 5: Current nationwide density of the selected species and climate metrics shaded by tree density (in 
grey). The climate metrics’ decadal average for the selected region of interest is scattered on top. Uncertainty, 
when selected, is generated from 90% confidence intervals (CI) on the ensemble means. 

 
3 User Guide 
Below, we provide a brief user guide for our ShinyApp, which provides instructions for selected features. As 
one of our project goals was updating the current NCASI CPAT, we focused on detailing features that have 
changed. An overview of the application screen can be found in Figure 6 and is comprised of a draggable 
background map that can also be zoomed in and out, a control panel that can be used to select different 
tree species, year ranges, and RCPs, and a dynamic information panel. The entire workflow can be found in 
our publicly hosted GitHub Repository. 

 
3.1 Adding Graphical Plot Selection 
The updated CPAT tool can extract data for a specific location or selected region on the background 
screen. Instead of entering latitude and longitude coordinates, a user can click on the location of interest 
to obtain relevant climate information. Furthermore, using the pentagon button, at right of the control 
panel, a user can now draw a polygon over a region of interest to extract averaged data to be used analyses. 
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Figure 6: Main Screen of the new CPAT. The main features include an interactive background map, control 
panel (upper left), and information panel (at right). Parameters such as tree species, RCP, and range of 
interest can be updated from the control panel, while the information panel contains the climate and tree 
species summary tables and graphs relevant to the selected plot or region. 

 
3.2 Implementing Uncertainty 
Uncertainty in climate projections adds another layer of understanding about how climate is expected to 
change. Uncertainty in climate models is typically broken down into “reducible” and “irreducible” uncertainty. 
“Irreducible” uncertainty comes from inherent variability in the climate system - e.g., what ranges of scenarios 
are actually possible - while “reducible” uncertainty is generated as an artifact from large ensemble climate 
modeling and can be reduced by model improvements. By using the entire CMIP5 multi-model ensemble, we 
are theoretically able to reduce the “reducible” error on our climate projections as much as possible given 
current understanding of the climate system to produce an accurate mean trajectory. In the updated CPAT tool, 
wherever we added uncertainty into our projections, we added an option to toggle uncertainty “on” and “off”. 
Because the uncertainty is generated from ensemble means, it can be understood as uncertainty in the 
underlying climatology and should not be used to bound expected temperatures or precipitation values for any 
given year or month. 

 
3.3 Help Infographic and Information Panel 
To help guide users on how to select plots and interact with the control and information panel, we included a 
visualization GIF which provides a quick snapshot of how to use the application. It is available by clicking on 
the “?” at the bottom left of the screen (Figure 6). Adjacent to the help infographic is the information “i” 
button, which pulls up information regarding the app creation and people involved with the project. 

 
3.4 R-Plotly Figures 
One significant update to the CPAT tool was re-designing the figures with Plotly, an interactive graphing 
package. Plotly allows users to zoom in on regions of interest in a figure, hover to view specific measurements from 
points of interest, and the option to download graphics directly to their personal devices, which can be 
used for presentations and reports. We have also used Plotly to allow users to select any subset of RCP 
pathways to highlight for comparison. This can be accessed by clicking on a pathway in the legend to deselect or 
double-clicking a pathway of interest to deselect all other pathways. 
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4 Discussion 
The goal of this project was to continue to advance the user experience, develop measures of uncertainty, and 
design new climate features for the NCASI CPAT. By creating a flexible sample product for Vermont and 
New Hampshire, our team created an exciting new user experience and updated visualization tools. The 
updated CPAT tool focused on interactivity, placing a background map of the United States at the center of the 
design, allowing users to select a specific location or region of interest graphically. The figures have been 
redesigned with the goal of improved data access and transparency in addition to presenting uncertainty in the 
climatology. 

 
4.1 Scaling to the United States 
To capture uncertainty, we had to creatively design ways to collapse the 25 GB raw CMIP5 dataset into a size 
that could be uploaded and used on the web. By calculating uncertainty windows and saving the modified 
dataset, we were ultimately able to shrink our dataset by a factor of 75 to about 350 MB. While this demo can 
easily be deployed to even a free account on shinyapps.io, we estimate that a dataset for the entire US’s nearly 
ten trillion square meter land-area would be close to 60 GB, far exceeding even a paid shinyapps.io account. 
Perhaps the easiest way to scale to this level and shrink the dataset would be to aggregate the yearly monthly 
data to a decadal timescale, which would not significantly change the results of the climate dataset and could 
shrink the data by a factor of three as it is by far the largest dataset required. Uncertainty is an essential 
component of the climate story and expending additional time and resources to ensure its inclusion will lend 
significant weight to the results. 

 
4.2 Next Steps 
While a sleek user experience and added uncertainty lends confidence to the results, there are several additional 
features we believe could be invaluable to future CPAT development. As noted in Section 2.1, there are 
distinct advantages to using CMIP6 data. Furthermore, developing features using ensemble members as 
opposed to means would allow for analyses that report extremes. For example, we assess changes in drought 
frequency and severity alongside changes in extreme temperature, which can threaten tree survival over shorter 
timescales. 
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