## NCASI Fact Sheet

SEPTEMBER 2025

## Conversion of Higher Heating Values to Lower Heating Values for Various Fuels Used in the FPI

The **higher heating value** (HHV, or total heating value or gross heating value) is the heat of combustion  $(-\Delta \hat{H}_c^o)$  with  $H_2O(I)$  as a combustion product, and the **lower heating value** (LHV, or net heating value) is the value based on  $H_2O(v)$  as a product. Since  $\Delta \hat{H}_c^o$  is always negative, the heating value is positive.

To calculate the LHV of a fuel from an HHV or vice versa, one must calculate the moles of water produced when a unit mass of the fuel is burned. If this quantity is designated n, then:

$$HHV = LHV + n \Delta \hat{H}_v (H_2O, 25^{\circ}C)$$
 (1)

where  $\Delta \hat{H}_{v}$  (H<sub>2</sub>O, 25°C) is the heat of vaporization of water at 25°C = 44.013 kJ/mol or 18,934 Btu/lb-mole.

## **Example Calculation**

- → Find the LHV of wet Douglas fir bark containing 5.9% H (dry basis), 50% moisture, and an HHV of 4,752 Btu/lb wet bark.
- $\rightarrow$  1 lb of wet bark at 50% moisture has 0.5 lb of H<sub>2</sub>O or 0.0278 lb-moles of H<sub>2</sub>O (0.5/18).
- $\rightarrow$  1 lb of wet bark has 0.5 lb of dry bark and thus 0.0295 lb of H (0.5 × 0.059), which will result in 0.01475 lb-moles of H<sub>2</sub>O (0.0295/2).
- $\rightarrow$  Thus, combustion of 1 lb wet bark results in 0.0278 + 0.01475 = 0.04255 lb-moles of H<sub>2</sub>O.
- $\rightarrow$  Using eq. 1, LHV = HHV n  $\Delta \hat{H}_{\nu}$  (H<sub>2</sub>O, 25°C) = 4,752 0.04255 × 18,934 = 3,947 Btu/lb and the ratio of LHV to HHV is 3,947 / 4,752 = 0.83.
- ightarrow Table 1 estimates this ratio for several fuels that are typically used in the forest products industry.

**Table 1.** Conversion of HHVs to LHVs for typical fuels burned in the FPI.

| Fuel Type                                          | Typical %<br>Moisture | Typical<br>% H Dry<br>Basis | Typical<br>HHV,<br>Btu/lb | Estimated<br>LHV,<br>Btu/lb | Ratio of<br>LHV to<br>HHV |
|----------------------------------------------------|-----------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Pittsburgh No. 8 bituminous coal <sup>a</sup>      | 5.2                   | 5.1                         | 12,540                    | 12,028                      | 0.96                      |
| Illinois No. 6 bituminous coal <sup>a</sup>        | 17.6                  | 4.9                         | 10,300                    | 9,733                       | 0.94                      |
| Anthracite coal <sup>a</sup>                       | 7.7                   | 1.9                         | 11,890                    | 11,643                      | 0.98                      |
| North Dakota lignite coal <sup>a</sup>             | 33.3                  | 4.5                         | 7,090                     | 6,456                       | 0.91                      |
| Louisiana natural gas <sup>a</sup>                 | 0.00                  | 22.7                        | 21,824                    | 19,677                      | 0.90                      |
| Distillate fuel oil (No. 2) <sup>a</sup>           | 0.05                  | 12.9                        | 19,460                    | 18,239                      | 0.94                      |
| Residual fuel oil (No. 6) <sup>a</sup>             | 0.10                  | 10.8                        | 18,200                    | 17,178                      | 0.94                      |
| Douglas fir bark <sup>b</sup>                      | 50.0                  | 5.9                         | 4,755                     | 3,950                       | 0.83                      |
| Loblolly pine bark <sup>b</sup>                    | 50.0                  | 5.6                         | 4,687                     | 3,896                       | 0.83                      |
| Dry wood fuel <sup>b,c</sup> (Douglas fir)         | 10.0                  | 6.3                         | 8,560                     | 7,918                       | 0.93                      |
| Wood chips/screenings (Douglas fir) <sup>b</sup>   | 50.0                  | 6.3                         | 4,530                     | 3,705                       | 0.82                      |
| Low solids black liquor (65% solids) <sup>d</sup>  | 35.0                  | 3.3                         | 3,900                     | 3,329                       | 0.85                      |
| High Solids black liquor (75% solids) <sup>d</sup> | 25.0                  | 3.3                         | 4,500                     | 4,003                       | 0.89                      |

<sup>&</sup>lt;sup>a</sup> moisture, % H, and HHV from: Steam, Its Generation and Use. 40th ed. Babcock & Wilcox.

## Based on Table 1, the following average ratios for LHV/HHV may be used:

• Bituminous coal: 0.95;

• Anthracite coal: 0.98;

• Natural gas: 0.90;

• No. 2 and No. 6 oil: 0.94;

• Bark: 0.83;

• Dry wood residues: 0.93;

• Wood chips/screenings: 0.82;

• Black liquor: 0.87.

For more information, contact <a href="mailto:info@ncasi.org">info@ncasi.org</a>.

<sup>&</sup>lt;sup>b</sup>% H and HHV from NCASI files

<sup>&</sup>lt;sup>c</sup> Dry wood residues from wood products operations.

<sup>&</sup>lt;sup>d</sup> %H from Adams, T.N., W.J. Frederic, T.M. Grace, M. Hupa, K. lisa, A.K. Jones, and H. Tran. 1997. Kraft Recovery Boilers. Tappi Press.